検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Compton scattering of quasi-monochromatic $$gamma$$-ray beam

Omer, M.; 静間 俊行*; 羽島 良一*

Nuclear Instruments and Methods in Physics Research A, 951, p.162998_1 - 162998_6, 2020/01

 被引用回数:1 パーセンタイル:13.27(Instruments & Instrumentation)

Compton scattering of a single-energy $$gamma$$-ray results in a one-to-one relationship between the incident and scattered photon energies. This relationship is altered when the incident beam has a definite energy distribution because of the broadening occurring in the energy distribution upon Compton scattering. This broadening causes a change in the spectral density of the Compton-scattered spectra. To restore the spectral density, the energy distribution of the scattered radiation must be manifested as a function of the scattering kinematics. Here, we propose a simple analytic way to calculate the energy spread of the scattered photons in terms of the geometry of the scattering process and the energy spread of the incident photon beam. The predictions of the model agree with measurements of Compton scattering of quasi-monochromatic $$gamma$$-ray beams, carried out at the High Intensity $$gamma$$-ray Source (HI$$gamma$$S) facility, Duke University. As a benchmark of our method, we measured the intensity profile of energy-distributed $$gamma$$-ray beams by direct measurements as well as by Compton scattering. We found that only when the spectral density of the scattered radiation is restored, the measured intensity profile agrees with the actual profile of the incident beam. The proposed method can continuously measure the flux of an energy-distributed $$gamma$$-ray beams in the real time and on a bin-by-bin basis. Such online monitoring of $$gamma$$-ray beams is indispensable for in-beam measurements and applications. This work was supported by the subsidiary for promotion of strengthening nuclear security or the like of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

論文

Measurement of the $$^{77}$$Se($$gamma$$, n) cross section and uncertainty evaluation of the $$^{79}$$Se(n, $$gamma$$) cross section

北谷 文人; 原田 秀郎; 後神 進史*; 岩本 信之; 宇都宮 弘章*; 秋宗 秀俊*; 豊川 弘之*; 山田 家和勝*; 井頭 政之*

Journal of Nuclear Science and Technology, 53(4), p.475 - 485, 2016/04

 被引用回数:5 パーセンタイル:43.12(Nuclear Science & Technology)

We precisely measured the ($$gamma$$, n) cross section for $$^{77}$$Se by developing a spectroscopic method utilizing Laser Compton-Scattering $$gamma$$-rays. Moreover, the $$^{79}$$Se(n, $$gamma$$) $$^{80}$$Se cross section was deduced using the statistical model calculation code CCONE with $$gamma$$-ray strength functions adjusted to reproduce the ($$gamma$$, n) cross sections for $$^{77}$$Se and the even Se isotopes $$^{76}$$Se, $$^{78}$$Se and $$^{80}$$Se. The reliability of the $$^{79}$$Se(n, $$gamma$$) $$^{80}$$Se cross section calculated by CCONE with the adjusted $$gamma$$-ray strength function was evaluated by comparing available experimental (n, $$gamma$$) cross sections for stable $$^{76, 77}$$Se isotopes and those calculated by CCONE with the adjusted $$gamma$$-ray strength function. The result provides fundamental data for the study of nuclear transmutation for the long-lived fission product of $$^{79}$$Se.

2 件中 1件目~2件目を表示
  • 1